www是什么意思| 43是什么意思| 2023年属什么生肖| yjs是什么意思| 多什么多什么| 福建岩茶属于什么茶| 中国国粹是什么| ahc是韩国什么档次| 香港什么东西值得买| 商业保险报销需要什么材料| 诛是什么意思| 幺妹是什么意思| 金刚菩提是什么植物的种子| 生完孩子吃什么补身体| 健康证都查什么传染病| 气阴两虚是什么意思| 弥漫性病变是什么意思| 你为什么背着我爱别人| 身在其位必谋其职是什么意思| 小孩坐飞机需要什么证件| 平五行属什么| 小便无力吃什么药| 抬举征阳性是什么意思| 62岁属什么生肖| 二级以上医院是什么意思| 双子座男生喜欢什么样的女生| 备孕喝豆浆有什么好处| 落子无悔是什么意思| 皮肤干燥缺什么维生素| 揭榜是什么意思| 夏的五行属什么| 石女是什么| 周边是什么| 吃什么可以控制血糖| 什么是小三| 什么是纤维化| 续弦是什么意思| 大便是红色的是什么原因| 什么叫法令纹| 苹果和生姜煮水喝有什么功效| 5月5日什么星座| 什么炖鸡汤好喝又营养| 肺气肿用什么药效果好| ahc属于什么档次| 大男子主义什么意思| 梦见别人拉屎是什么意思| 红参对子宫有什么作用| 可刀是什么意思| 浮萍是什么意思| 耳鸣吃什么药最好| 一个王一个番读什么| 阴囊炎用什么药治疗| 肝炎五项检查是什么| 中考报名号是什么| 蓝字五行属什么| 孕妇缺维生素D对胎儿有什么影响| 脸上长黑痣是什么原因| metoo是什么意思| 山楂什么时候成熟| 国防部部长什么级别| 五险都有什么| a型血和b型血生的孩子是什么血型| 囡是什么意思| 经期适合喝什么汤| 咳嗽吐白痰是什么病| 四维彩超和大排畸有什么区别| 破釜沉舟什么意思| 跑马了是什么意思| 子宫肌瘤有什么危害| 移植后吃什么水果好| 炖鸡汤放什么材料好吃| 去香港自由行要办什么手续| 生物膜是什么| 骨结核吃什么药效果好| 1月份是什么星座的人| 属马跟什么属相犯冲| 矢气是什么意思| 月经期肚子疼是什么原因| 舌裂纹是什么原因| 毛子是什么意思| 氧化是什么意思| 脚浮肿是什么原因| 新生儿出院回家有什么讲究| 什么时候打胎对身体伤害最小| 妾是什么意思| 多汗症挂什么科| 腿胖是什么原因引起的| 牙痛是什么原因引起的| 什么东西辟邪| 反式脂肪酸是什么意思| 皮疹长什么样| 双向情感障碍是什么病| 孕晚期羊水多了对宝宝有什么影响| 德艺双馨什么意思| 石斛能治什么病| 什么地飞翔| 小水母吃什么| der是什么意思| 吃什么补黑色素最快| 人参果吃了有什么好处| 去离子水是什么| 拉直和软化有什么区别| 楚楚欲动是什么意思| 取经是什么意思| 7月24日是什么日子| 栀是什么意思| 4t什么意思| 促黄体生成素低说明什么| 坐骨神经痛是什么原因引起的| 灵魂是什么| 怀孕什么时候可以同房| 小孩吐奶是什么原因| 沉默不是代表我的错是什么歌| 卯木代表什么| 虫草花不能和什么一起吃| 牙齿里面疼是什么原因| 7.6是什么星座| 死党什么意思| 兆是什么意思| 户籍地是什么| 什么发型适合自己| 罗贯中是什么朝代的| 8月6号什么星座| 杉字五行属什么| 白酒都有什么香型| 赛博朋克是什么意思| 张国立老婆叫什么名字| 经常饿是什么原因| 牛肉馅配什么菜包饺子好吃| 心可舒治什么病| 低烧吃什么药| 梦见自己掉头发是什么征兆| 淋巴结炎挂什么科| 潮喷是什么感觉| 天庭的动物是什么生肖| 拉肚子吃点什么食物好| 什么的风| 大米里放什么不生虫子| 阳痿早泄用什么药| 农历十月初八是什么星座| 排卵期出血吃什么药| 宁五行属性是什么| 九五年属什么| 夫妻都是a型血孩子是什么血型| 睡觉被口水呛醒是什么原因| 同人小说是什么| 马后面是什么生肖| 老是放臭屁是什么原因| 头发粗硬是什么原因| 血糖高的病人吃什么| ck医学上是什么意思| 大家闺秀是什么生肖| 孕妇梦见自己出轨是什么意思| 吃什么缓解孕吐| 李白是什么| 七上八下是什么生肖| 博大精深什么意思| 什么情况下要打破伤风| 脚老抽筋是什么原因| 胃气不通什么症状| 3月3日什么星座| lch是什么病| 小便绿色是什么原因| 火气太旺是什么原因| 复方氨酚烷胺胶囊是什么药| 什么是干咳| hpv73阳性是什么意思| 能人是什么意思| 雷锋属什么生肖| 为什么硬起来有点疼| 哺乳期能吃什么水果| 辞海是什么书| 银芽是什么菜| 脐橙是什么意思| 肠道ct能检查什么| pm什么意思| 猜忌是什么意思| 女人吃什么补月牙最快| 经期吃什么水果比较好| 维生素b2有什么功效| 尿路感染吃什么药| 炀是什么意思| 大名鼎鼎的鼎是什么意思| 胃酸吃什么食物好| 经期是什么意思| 吃什么皮肤好| 月亮像什么的比喻句| 肠炎挂什么科| 老叹气是什么原因| 勃起功能障碍吃什么药| 锲而不舍下一句是什么| 历久弥新是什么意思| 清明节一般开什么生肖| 朝鲜为什么那么落后| 子宫肌瘤吃什么食物| 子午相冲是什么意思| 料酒可以用什么代替| fierce是什么意思| 黄金微针是什么| 过度换气是什么意思| 胰岛素的作用是什么| 腰扭伤吃什么药| 炮制是什么意思| ggdb是什么牌子| 璋字五行属什么| 鼻子旁边长痘是什么原因| 一个人在家无聊可以做什么| 胃寒吃什么食物好| xo酱是什么酱| 签注什么意思| 脑门痒痒是什么预兆| 过敏性紫癜什么症状| 内涵是什么意思| 985大学什么意思| 什么麻料最好| 谷氨酰基转移酶低是什么原因| 为什么医生爱开喜炎平| 菠菜不能和什么食物一起吃| 2月22日什么星座| 黄精什么功效| 什么是保守治疗| 梦见捡金首饰是什么意思| 山及念什么| 子宫内膜炎症有什么症状| 西海龙王叫什么| 苯磺酸氨氯地平片是什么药| 袁崇焕为什么杀毛文龙| 反复口腔溃疡是什么病的前兆| 雍正为什么只在位13年| 取环什么时候取最好| 嘴苦什么原因| 学英语先从什么学起| 胆碱能性荨麻疹吃什么药| 承五行属性是什么| 2003年属什么生肖| 男人艾灸什么地方壮阳| 梦见自己捡钱是什么意思| 叒字什么意思| 六度万行 是什么意思| 东坡肉属于什么菜系| 安置房和商品房有什么区别| 夕阳朝乾是什么意思| 次方是什么意思| 吃什么补脑增强记忆力| 经期是什么意思| 白带黄什么原因| 什么是马赛克| 拉开帷幕是什么意思| 女生被插是什么感觉| hushpuppies是什么牌子| 半夜吃什么不会胖| 封神榜是什么| 两个马念什么| 1月3日什么星座| 男票是什么意思| 嘴苦口臭是什么原因造成的| 豆蔻年华什么意思| 海螺吃什么| 精索静脉曲张是什么原因导致的| 麦冬有什么功效| 丢钱是什么预兆| 五行黑色属什么| 口苦口臭挂什么科| 披萨用什么面粉| 百度Vai al contenuto

现售食品安全监管规范出台 “养生粉”等不得宣传疗效

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento da Batteri)
Come leggere il tassoboxProgetto:Forme di vita/Come leggere il tassobox
Come leggere il tassobox
Batteri
Escherichia coli
Intervallo geologico
Eoarcheano (3800 Ma) - recente
Classificazione scientifica
DominioProkaryota
RegnoBacteria
Divisioni/phylum
百度 要破除论资排辈、头衔崇拜,把品德、能力和业绩等作为发现评价人才的主要标准,为德才兼备、勇于创新的人才脱颖而出创造条件。

In microbiologia e biologia, i Bacteria (batteri) sono un regno comprendente microrganismi unicellulari, procarioti, in precedenza chiamati anche schizomiceti. Le loro dimensioni sono solitamente dell'ordine di pochi micrometri, ma possono variare da circa 0,2 μm dei micoplasmi fino a 30 μm di alcune spirochete. Particolarissimo il caso del batterio Thiomargarita magnifica, il quale raggiunge 2 cm di lunghezza.

Secondo la tassonomia proposta da Robert Whittaker nel 1969, assieme alle cosiddette "alghe azzurre" o "cianoficee", oggi più correttamente chiamate cianobatteri, i batteri costituivano il regno delle monere. La classificazione proposta da Thomas Cavalier-Smith (2003) riconosce invece due domini: Prokaryota (comprendente i regni archaea e bacteria) ed Eukaryota (comprendente tutti gli eucarioti, sia unicellulari sia pluricellulari).

Alcuni batteri vivono a spese di altri organismi e sono responsabili di danni più o meno gravi all'uomo, alle piante e agli animali. Nell'uomo provocano, per esempio, malattie quali peste, colera, lebbra, polmonite, tetano e difterite, fino a cento anni fa spesso mortali e oggi efficacemente combattute con l'uso dei farmaci. Altri batteri invece sono utili per l'essere umano, per esempio andando a costituire il microbiota umano.

Suddivisione e classificazione

[modifica | modifica wikitesto]

I procarioti si distinguono quindi in due gruppi principali:

Fra loro si distinguono per forma nei seguenti:

  • bacilli: a forma di bastoncino; si dividono in Clostridia (anaerobi) e Bacilli (anaerobi e/o aerobi);
  • cocchi: sferici; se si dispongono a coppia si chiamano diplococchi, a catena si chiamano streptococchi, a grappolo si chiamano stafilococchi, a forma di cubo si chiamano sarcine;
  • vibrioni: a virgola;
  • spirilli: a spirale;
  • spirochete: con più curve.

Un'altra importante suddivisione è quella che li raggruppa secondo l'optimum di temperatura alla quale possono crescere; per questa suddivisione si hanno tre sottoclassi:

Una classificazione è basata sulla loro relazione rispetto ad un organismo:

  • batteri commensali (o simbionti): normalmente presenti sulla superficie di un determinato tessuto, senza causare malattia e/o possono svolgere funzioni che possono essere utili all'organo stesso;
  • batteri patogeni: la cui presenza indica patologia e infezione; nel dettaglio si ha:
    • patogeni facoltativi: non causano sempre malattia ma dipende dall'individuo e dalla loro concentrazione;
    • patogeni obbligati: causano in modo indipendente un processo morboso.

Identificazione

[modifica | modifica wikitesto]

Per procedere all'identificazione di un batterio, si usano le seguenti metodologie:

  • riconoscimento a microscopio ottico o elettronico
  • colorazione di Gram, analisi della morfologia della colonia, mobilità, capacità di produrre spore, acido-resistenza e esigenza di condizioni aerobiche o anaerobiche per la crescita

La colorazione di Gram è una delle metodologie più utilizzate e si basa sulla distinzione delle caratteristiche della parete batterica: una struttura con più peptidoglicani si colora e di conseguenza si dice che il batterio è Gram-positivo; una minor presenza di peptidoglicani contraddistingue i Batteri Gram-negativi.

Altre prove di natura biochimica, quali:

  • la valutazione della capacità del microrganismo di metabolizzare particolari terreni (con conseguente generazione di acidi e/o gas);
  • di produrre particolari enzimi (es. catalasi, fosfatasi), oppure di ridurre od ossidare determinati componenti.

I batteri si possono trovare, sotto forma di spore, in forma di vita latente, molto resistente a condizioni estreme. I batteri sporigeni sono specie che, trovandosi in scarsità di nutrimento o in un habitat a loro ostile, producono delle spore, ossia delle cellule resistenti agli agenti esterni. I batteri sporigeni sono il più delle volte dei bacilli Gram-positivi e clostridi.

Le più moderne tendenze sono inoltre volte all'osservazione di caratteristiche genetiche anziché morfologiche o biochimiche.[1] Tra le più diffuse tecniche DNA-based impiegate, vi sono:

  • VNTR (Variable Number of Tandem Repeat);
  • PFGE (Pulsed-Field Gel Elettrophoresis);
  • MLST (Multi-Locus Sequence Typing);
  • sequenziamento dell'intero genoma batterico per individuare in modo inequivocabile la specie del batterio osservato.

Struttura della cellula batterica

[modifica | modifica wikitesto]

I batteri posseggono una parete batterica, composta da peptidoglicani, una parte proteine e una parte peptina, che è una struttura caratteristica della cellula procariotica, e al di sotto della parete è presente la membrana cellulare: su di essa si trovano quasi tutti gli enzimi che svolgono le reazioni metaboliche. Il DNA non è sempre presente sotto forma di cromosoma singolo e circolare: esso può essere circolare o lineare e possono essere presenti fino a tre cromosomi in una stessa cellula batterica. Il DNA si trova in una zona chiamata nucleoide e non è separato dal citoplasma da alcuna membrana nucleare, che invece è presente nelle cellule eucariotiche; nel citoplasma si trovano anche piccole molecole circolari di DNA chiamate plasmidi. Posseggono organi di locomozione: fimbrie o uno o più flagelli. La parete batterica può essere rivestita esternamente da una capsula, formata di regola da polisaccaridi secreti dai batteri stessi. Nel caso di Bacillus anthracis, la capsula è composta da polipeptidi dell'acido D-glutammico. La presenza di capsula conferisce alle colonie batteriche un aspetto "liscio" o "mucoide", mentre quelle prive di capsula manifestano un aspetto "rugoso". La funzione della capsula è quella di proteggere meccanicamente la cellula procariotica dall'ambiente esterno.

Membrana cellulare o citoplasmatica

[modifica | modifica wikitesto]
Batteri visti al microscopio (1000X)

La membrana cellulare ha una struttura a mosaico fluido come quella degli eucarioti, tuttavia non è dotata di steroli. Fanno eccezione i micoplasmi, che incorporano gli steroli nella membrana quando si sviluppano in terreni che li contengono. Nei Gram-negativi può essere anche chiamata membrana interna, in contrapposizione alla loro membrana esterna.

Le principali funzioni della membrana sono: barriera semipermeabile, piattaforma di supporto per enzimi della catena respiratoria e delle biosintesi di fosfolipidi di membrana, di polimeri della parete e del DNA.

Le membrane cellulari batteriche formano centri di proteine fosforiche dette introflessioni o mesosomi, di cui si distinguono due tipi: mesosomi settali, che intervengono nella formazione del setto durante la divisione cellulare, e mesosomi laterali, che costituiscono una piattaforma sulla quale si associano proteine cellulari, quali gli enzimi della catena respiratoria (svolgendo una funzione analoga all'energia liberata dall'idrolisi di adenosintrifosfato (ATP) per trasportare zuccheri, amminoacidi, vitamine e piccoli peptidi. Le proteine di trasporto sono dette transporters o permeasi e sono responsabili della diffusione facilitata [tipo canale o tipo carrier (uniporto)], del trasporto attivo primario, del trasporto attivo secondario (tipo simporto o antiporto) e del trasporto con fosforilazione del substrato (fosfotransferasi). Circa la metà delle proteine di trasporto dei batteri appartengono al sistema di trasporto attivo primario ABC (ATPase Binding Cassette) e al sistema di diffusione facilitata/trasporto attivo secondario MFS (major facilitator superfamily). Le permeasi batteriche sono generalmente inducibili, per cui la densità delle proteine di trasporto nella membrana è regolata dalla concentrazione del soluto nel mezzo e dalle necessità metaboliche della cellula.

Il trasporto dal citoplasma allo spazio extracitoplasmatico comprende due sistemi di efflusso noti, entrambi presenti nella membrana citoplasmatica: sistema antiporto H+/farmaci e proteine della famiglia ABC.

Le ABC permeasi trasportano sia piccole molecole sia macromolecole in risposta alla idrolisi di ATP. Questo sistema di trasporto è composto da due proteine integrali di membrana con sei segmenti transmembranosi, due proteine periferiche associate sul versante citoplasmatico, che legano idrolizzano l'ATP, e una proteina o lipoproteina recettoriale periplasmica (vedi sotto) che lega il substrato. Le ABC permeasi più studiate comprendono il sistema di trasporto del maltosio di Escherichia coli e quello dell'istidina di Salmonella typhimurium.

Dal momento che i batteri Gram-positivi sono privi della membrana esterna, il recettore, una volta secreto, si perderebbe nell'ambiente extracellulare. Di conseguenza, questi recettori risultano legati alla superficie esterna della membrana citoplasmatica mediante ancore lipidiche. Poiché di frequente i batteri vivono in mezzi dove la concentrazione di nutrienti è bassa, le proteine ABC permettono alla cellula di concentrare i nutrienti nel citoplasma contro il gradiente di concentrazione.

La superfamiglia MFS (detta anche famiglia uniporto-simporto-antiporto) comprende proteine di trasporto composte da una sola catena polipeptidica che possiede 12 o 14 potenziali segmenti transmembranosi ad alfa elica. è interessata alla diffusione facilitata e al trasporto attivo secondario (simporto o antiporto) di piccoli soluti in risposta a gradienti ionici chemiostitici (principalmente gradienti di H+ o Na+): zuccheri semplici, oligosaccaridi, inositoli, amminoacidi, nucleosidi, esteri organici del fosfato, metaboliti del ciclo di Krebs, farmaci e una gran varietà di anioni e cationi organici.

Parete cellulare

[modifica | modifica wikitesto]

La parete cellulare presenta una struttura notevolmente diversa a seconda che si tratti di batteri Gram-positivi o Gram-negativi, anche se il peptidoglicano costituisce la sostanza universalmente presente nella parete cellulare dei batteri. Nei batteri Gram-negativi lo strato di peptidoglicano è piuttosto sottile, con uno spessore di circa 50-100 ?ngstr?m. La maggioranza dei batteri Gram-positivi ha invece una parete cellulare relativamente spessa (circa 200-800 ?ngstr?m), in cui al peptidoglicano sono covalentemente legati altri polimeri, quali acidi teicoici, polisaccaridi e peptidoglicolipidi. Esternamente al peptidoglicano i batteri Gram-negativi hanno una membrana esterna di spessore di circa 75-100 ?ngstr?m.

Il peptidoglicano, detto anche mucopeptide batterico o mureina, è composto da un peptide complesso formato da un polimero di aminoglucidi e peptidi. Nei batteri Gram-positivi è disposto in molteplici strati, tanto da rappresentare dal 50% al 90% del materiale della parete cellulare, mentre nei batteri Gram-negativi vi sono uno o al massimo due strati di peptidoglicano, che costituiscono il 5%-20% della parete.

Il peptidoglicano è un polimero composto da: una catena principale, identica in tutte le specie batteriche, formata da subunità disaccaridiche di N-acetilglucosamina e da acido N-acetilmuramico, unite da legame Beta, 1-4 glicosidico; catene laterali di un identico tetrapeptide, legato all'acido N-acetilmuramico; di solito, una serie di ponti peptidici trasversali, che uniscono i tetrapeptidi di polimeri adiacenti. I tetrapeptidi dei polimeri adiacenti possono essere legati, invece che da ponti peptidici, da legami diretti tra la D-alanina di un tetrapeptide e la L-lisina o l'acido diaminopimelico del tetrapeptide adiacente. Le catene tetrapeptidiche laterali e i ponti trasversali variano a seconda della specie batterica.

Il peptidoglicano dei batteri Gram-positivi è legato a molecole accessorie, come acidi teicoici, acidi teucuronici, polifosfati o carboidrati. La maggior parte dei batteri Gram-positivi contiene considerevoli quantità di acidi teicoici, fino al 50% del peso umido della parete. Si tratta di polimeri idrosolubili, formati da ribitolo o glicerolo, uniti da legami fosfodiesterici. Il ribitolo e il glicerolo possono legare residui glucidici, come glucosio, galattosio o N-acetilglucosamina, e di solito D-alanina, in genere legata in posizione 2 o 3 del glicerolo oppure 3 o 4 del ribitolo. Gli acidi teicoici rappresentano i principali antigeni di superficie dei batteri Gram-positivi che li contengono.

La parete dei batteri gram-negativi è notevolmente più complessa, in quanto esternamente allo strato di peptidoglicano è presente la membrana esterna; le due strutture sono legate dalla lipoproteina.

La componente proteica della lipoproteina è unita con legame peptidico ai residui di DAPA (acido diaminopimelico) delle catene laterali tetrapeptidiche del peptidoglicano, mentre la componente lipidica è fissata con legame covalente alla membrana esterna, del cui foglietto interno è una componente importante.

Membrana esterna

[modifica | modifica wikitesto]

La membrana esterna ha la struttura tipica delle membrane biologiche ed è riscontrata solo nei batteri Gram-negativi, esternamente alla loro parete cellulare. Gran parte del foglietto fosfolipidico esterno è composto da molecole di lipopolisaccaride (LPS), o endotossina dei batteri gram-negativi, formato da un lipide complesso, chiamato lipide A, a cui è unito un polisaccaride composto da una parte centrale e da una serie terminale di unità ripetute. Il lipide A è formato da una catena di disaccaridi della glucosammina, uniti da ponti di pirofosfato, a cui sono legati numerosi acidi grassi a catena lunga, fra cui l'acido beta-idrossimiristico (C14), sempre presente è caratteristico di questo lipide.

La parte centrale del polisaccaride è costante in tutte le specie batteriche gram-negative, mentre le unità ripetute sono specie-specifiche e sono costituite di solito da trisaccaridi lineari oppure da tetrasaccaridi o pentasaccaridi ramificati. Il polisaccaride costituisce l'antigene O di superficie e la specificità antigenica è dovuta alle unità ripetute terminali. La tossicità del LPS è invece dovuta al lipide A.

Fra le principali proteine della membrana esterna, le più abbondanti sono le porine. Le porine sono proteine transmembranose, organizzate in triplette, ciascuna subunità è formata da 16 domini in conformazione beta a disposizione antiparallela che danno origine a una struttura cilindrica cava. Il canale consente la diffusione di molecole idrofile di p.m. < 600-700 Da (fosfati, disaccaridi, ecc.), mentre le molecole idrofobe (compresi alcuni antibiotici beta-lattamici, come ampicillina e cefalosporine) possono attraversare la componente lipidica della membrana esterna.

Altre proteine della membrana esterna permettono la diffusione facilitata di numerose sostanze, quali maltosio, vitamina B12, nucleosidi e complessi ferro-carboniosi, mentre non sembra siano presenti sistemi di trasporto attivo.

Oltre alle proteine di trasporto, sono presenti recettori per la coniugazione batterica, per i fagi e le colicine (il recettore per il fago T6 e la colicina k è anche implicato nel trasporto dei nucleosidi).

Tra la membrana interna e quella esterna è compreso lo spazio periplasmico, parzialmente occupato dal peptidoglicano con la sua porosità. In questo spazio sono presenti le proteine periplasmiche: binding-proteins, che specificamente legano zuccheri, aminoacidi e ioni, coinvolte nell'attività recettoriale e di trasporto; enzimi, come le betalattamasi, codificate dai plasmidi. Lo spazio periplasmico è più spesso nei gram-negativi e più sottile nei Gram-positivi.

Metabolismo batterico

[modifica | modifica wikitesto]

Nei batteri non fotosintetici, l'ATP viene prodotto da reazioni di ossidoriduzione.

Vi sono due meccanismi generali per la formazione di ATP negli organismi non fotosintetici: la respirazione, in cui il substrato organico o inorganico è ossidato completamente (nel caso di composti del carbonio, es. glucosio, l'ossidazione completa produce CO2 e H2O) e gli elettroni sono trasportati attraverso una catena di trasporto di elettroni (catena respiratoria) fino all'accettore finale, che è ossigeno, nella respirazione aerobia, o un substrato diverso (NO-3, SO=4, CO2, fumarato), in caso di respirazione anaerobica; la fermentazione, in cui il substrato organico è ossidato parzialmente e l'accettore finale di elettroni è un composto organico, senza che vi sia l'intervento di una catena di trasporto di elettroni. I processi di fermentazione prendono il nome dal prodotto finale (f. lattica, alcolica, butirrica, propionica, ecc.).

Nella catena respiratoria, i portatori di elettroni sono ancorati nella membrana cellulare, in modo tale che il passaggio di elettroni sia seguito dal trasferimento di protoni (H+) dal citoplasma all'esterno. Poiché la membrana è impermeabile ai protoni, questo fenomeno determina un gradiente di protoni. L'energia del gradiente di protoni può essere utilizzata in diversi processi, quali la generazione di ATP (modello chemiosmotico di formazione dell'ATP) o il trasporto di soluti. L'ATP si forma quando gli H+ diffondono nella cellula attraverso le ATP sintasi, il passaggio dei protoni attraverso queste proteine determina la conversione enzimatica di ADP e fosfato inorganico in ATP.

L'E. coli è uno dei batteri più studiati. Gli studi hanno dimostrato che E. coli può utilizzare diversi enzimi nella catena respiratoria, a seconda delle condizioni ambientali, in particolare della presenza o meno di ossigeno, e del tipo di substrato presente in caso di condizioni anaerobie.

In condizioni aerobie, E. coli sintetizza due distinte citocromo-ossidasi (citocromossidasi o e d), mentre in condizioni anaerobie può utilizzare nella catena respiratoria almeno cinque ossidoriduttasi terminali, che impiegano come accettori terminali di elettroni nitrato, dimetilsolfossido (DMSO), trimetilamina-N-ossido (TMAO), o fumarato.

Nella catena respiratoria, un pool di chinoni (ubichinone o menachinone) accoppia l'ossidazione di NADH per opera della NADH-deidrogenasi alla riduzione dell'accettore terminale di elettroni da parte delle ossidoreduttasi terminali.

La citocromossidasi o è l'enzima prevalente in condizioni ricche di ossigeno, ma con il diminuire della concentrazione di O2 i livelli della citocromossidasi o si riducono, mentre quelli della citocromossiadasi d aumentano. In condizioni povere di ossigeno, la sintesi degli enzimi della respirazione anaerobia permette di utilizzare accettori di elettroni diversi da O2, consentendo alla cellula procariota di mantenere il più efficiente metabolismo respiratorio in luogo del metabolismo fermentativo.

La sintesi delle ossidoreduttasi anaerobie è nitrato-dipendente, nel senso che il nitrato è l'accettore di elettroni preferenziale, per cui quando, in condizioni anaerobiotiche, la sua concentrazione è elevata, la sintesi della nitrato reduttasi è elevata mentre quella degli altri enzimi (DMSO/TMAO-reduttasi e fumarato-reduttasi) rimane bassa. Soltanto quando il nitrato è deficitario, la sintesi delle altre ossidoreduttasi aumenta. Questo tipo di regolazione degli enzimi della catena respiratoria permette di utilizzare al meglio lo spazio disponibile sulla membrana cellulare.

In assenza dei substrati alternativi delle ossidoreduttasi, la cellula utilizza la fermentazione.

In presenza di nitrato e in condizioni di anaerobiosi, la nitrato-reduttasi respiratoria (Nar) costituisce circa il 50% delle proteine della membrana cellulare di E. coli, mentre la formato-deidrogenasi ne rappresenta il 10% circa. Quindi, sebbene diversi donatori possano fornire elettroni alla Nar (es., NADH-deidrogenasi, succinato-deidrogenasi, lattato deidrogenasi) il sistema formato-nitrato reduttasi riveste una grande importanza fisiologica nelle suddette condizioni ambientali. Nar è composta da tre subunità proteiche: subunità catalitica NarG, che riduce il nitrato; subunità NarH, che contiene un centro [3Fe-4S] e tre centri [4Fe-4S] e trasferisce gli elettroni tra le altre due subunità; subunità NarI, che grazie ai suoi cinque domini transmembranosi ancora le altre due subunità alla membrana, inoltre contiene un citocromo b e ossida i chinoni (ubichinone o menachinone), liberando due protoni nello spazio periplasmico. Gli elettroni sono trasferiti dai chinoni a NarI, quindi attraverso i centri Fe-S di NarH a NarG.

In E. coli sono presenti due isoenzimi Nar: NarA e NarZ. Il primo isoenzima è inducibile ed è espresso in condizioni di anaerobiosi e in presenza di nitrato; si ritiene che sia responsabile del 90% dell'attività nitrato-reduttasica. Il secondo isoenzima è presente costitutivamente e mostra una modesta induzione da parte del nitrato. Il ruolo fisiologico della NarZ è quello di assicurare un rapido adattamento agli improvvisi passaggi dall'aerobiosi alla anaerobiosi, in attesa che la sintesi di NarA raggiunga livelli sufficienti.

La Nar dei batteri intestinali è responsabile della nitrosazione delle ammine alchiliche e aromatiche a causa della sua debole capacità di generare NO. La formazione dei nitroso-composti è una delle possibili cause del cancro gastrico.

Sintesi del peptidoglicano

[modifica | modifica wikitesto]

La sintesi della parete cellulare nei batteri Gram-positivi si sviluppa in 3 stadi, che si svolgono in distinti compartimenti cellulari: citoplasma, membrana cellulare e parete cellulare.

La sintesi dei precursori della parete cellulare comincia nel citoplasma e porta alla formazione dell'UDP-NAM-pentapeptide nucleotide di Park (UDP-MurNAc-L-Ala-D-iGlu-L-Lys-D-Ala-D-Ala). Inizialmente si verifica l'attacco dell'acetil-glucosamina all'UDP e quindi la conversione ad acido UDP-muramico per condensazione con fosfoenolpiruvato e riduzione. Gli aminoacidi del pentapeptide vengono aggiunti singolarmente, con l'intervento di uno specifico enzima per ciascun amminoacido.

Il nucleotide di Parker è trasferito su un lipide della membrana cellulare, in seguito al Legame fosfo-estereo con un undecaprenil-pirofosfato a spese dell'UDP, così da formare il lipide I (C55-PP-MurNAc-L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala). Dopo un'ulteriore modificazione che comporta l'aggiunta di un disaccaride per interazione con UDP-GlcNAc, così da generare il lipide II [C55-PP-MurNAc(-L-Ala-D-isoGlu-L-Lys(Gly5)-D-Ala-D-Ala)- 1-4-GlcNAc], il precursore del peptidoglicano, ancorato al lipide, è traslocato alla superficie extracitoplasmatica della membrana cellulare.

Quindi il precursore del peptidoglicano è incorporato nella parete cellulare, attraverso reazioni di transpeptidazione e transglicosilazione, con il contemporaneo distacco dal carrier lipidico. L'assemblaggio della parete cellulare è catalizzato dagli enzimi PBP (proteine che legano la penicillina), localizzati nella membrana citoplasmatica. Si distinguono due gruppi di PBP, a basso e ad alto peso molecolare (HMW), enzimi bifunzionali comprendenti la classe A e quella B, che differiscono per i domini N-terminali.

Le PBP HMW di classe A promuovono sia la polimerizzazione del glicano dai precursori disaccaridici (successive addizioni delle unità glicopeptidiche MurNAc(-L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala)-GlcNAc a C55-PP-MurNAc(-L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala)-GlcNAc) sia la transpeptidazione (cross-linking) dei peptici della parete. Quest'ultima reazione consiste nella rimozione proteolitica della D-Ala all'estremità C-terminale del pentapeptide e nella formazione di un nuovo legame ammidico tra l'aminogruppo del peptide trasversale (crossbridge) e il gruppo carbonilico della D-Ala in posizione 4. Questa reazione è il bersaglio degli antibiotici beta-lattamici che mimano la struttura della D-alanil-D-alanina. Dopo la reazione proteolitica, gli antibiotici beta-lattamici continuano a occupare il residuo serinico del sito attivo delle PBP, inibendole.

Interazioni tra batteri

[modifica | modifica wikitesto]

Già nel 1970 i ricercatori dell'Università di Harvard, Kenneth H. Nealson e John Woodland Hastings, confermarono l'intuizione che i batteri comunichino per mezzo di sostanze chimiche e, nel caso specifico dei batteri marini luminescenti, individuarono in un messaggero molecolare che si muove da una cellula batterica a un'altra, il controllore dell'emissione della luce; è proprio il messaggero a indurre l'attivazione dei geni che codificano per un enzima (luciferasi) e per le proteine coinvolte in questo fenomeno.[2] Mentre in alcuni casi la comunicazione intercellulare non implica mutamenti nella forma o nel comportamento delle cellule, in altri, invece, la diffusione di segnali chimici induce a modificazioni sostanziali nella struttura e nella attività dei microrganismi. Ad esempio i Myxococcus xanthus, che vivono nel suolo, quando sono a corto di sostanze nutritive si riuniscono in strutture pluricellulari, che consentono a migliaia di spore, ossia a cellule con maggiore resistenza alle condizioni estreme, di venir trasportate in un sito più idoneo. Le operazioni di aggregazione e di formazione di spore sono guidate da messaggeri chimici, che vengono attivati solo se un numero di cellule alto, o comunque superiore a una soglia, segnala problemi di sopravvivenza.
Le cellule batteriche elaborano interazioni anche con organismi complessi: ad esempio, i Rhizobium promuovono lo sviluppo di alcune piante, instaurando un rapporto di simbiosi con esse, comunicando permanentemente[3] con esse allo scopo di regolare tutte le fasi di un percorso che governa l'interazione di entrambi gli organismi.[2]

Classificazione delle specie
Haeckel (1894)
Tre regni
Copeland (1938)
Quattro regni
Whittaker (1969)
Cinque regni
Woese (1990)
Tre domini
Cavalier-Smith (2004)
Due domini e sette regni
Animalia Animalia Animalia Eukarya Eukaryota Animalia
Plantae Plantae Plantae Plantae
Protista Fungi Fungi
Protista Chromista
Protista Protozoa
Monera Monera Bacteria Prokaryota Bacteria
Archaea Archaea
  1. ^ Ellen Jo Baron, Medical Microbiology. 4th edition (1996). Chapter 3.
  2. ^ a b Richard Losick e Dale Kaiser, La comunicazione nei batteri (PDF), in Le Scienze, n. 345, maggio 1997, pp. 70-75. URL consultato il 16 novembre 2024.
  3. ^ (EN) Günther Witzany, Bio-Communication of Bacteria and their Evolutionary Roots in Natural Genome Editing Competences of Viruses, in The Open Evolution Journal, n. 2, 2008, pp. 44-54, DOI:10.2174/1874404400802010044.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàThesaurus BNCF 1792 · LCCN (ENsh85010813 · GND (DE4004296-0 · BNE (ESXX525557 (data) · J9U (ENHE987007284499305171 · NDL (ENJA00570000
大姨妈一直不干净是什么原因 赛字五行属什么 梦见鞋丢了是什么意思 960万平方千米是指我国的什么 誉之曰的之是什么意思
什么是日间手术 1998年属虎的是什么命 扁桃体肿大是什么原因引起的 总有眼屎是什么原因 去阴虱用什么药最好
更年期什么时候 律的右边读什么 龙胆草长什么样 党工委书记是什么级别 男人吃什么更持久
吃什么能降胆固醇 奶油的原料是什么 缺少维生素有什么症状 川芎有什么功效与作用 孕早期生气对胎儿有什么影响
1069是什么意思hcv9jop3ns9r.cn 骐字五行属什么hcv8jop7ns1r.cn 凌波鱼是什么鱼hcv9jop5ns6r.cn 阿米巴病是什么病zhongyiyatai.com 前列腺炎吃什么消炎药好imcecn.com
朔日是什么意思hcv9jop2ns0r.cn 闪购是什么意思clwhiglsz.com 甲状腺挂什么科hcv7jop5ns0r.cn 病入膏肓是什么意思hcv9jop6ns6r.cn 中华文化的精髓是什么hcv8jop2ns8r.cn
老师家访的目的是什么sanhestory.com 僧侣是什么意思hcv9jop7ns4r.cn 脑缺血灶是什么意思hcv7jop6ns7r.cn 什么是唐氏综合征hcv8jop3ns9r.cn 草莓印是什么hcv8jop3ns7r.cn
慈禧姓什么xscnpatent.com 什么是菜花状疣图片hcv8jop7ns7r.cn 月经要来之前有什么症状hcv9jop4ns8r.cn 1RM什么意思tiangongnft.com 九月十九是什么星座hcv8jop8ns8r.cn
百度